Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response.
نویسندگان
چکیده
Nodulation is a form of de novo organogenesis that occurs mainly in legumes. During early nodule development, the host plant root is infected by rhizobia that induce dedifferentiation of some cortical cells, which then proliferate to form the symbiotic root nodule primordium. Two classic phytohormones, cytokinin and auxin, play essential roles in diverse aspects of cell proliferation and differentiation. Although recent genetic studies have established how activation of cytokinin signaling is crucial to the control of cortical cell differentiation, the physiological pathways through which auxin might act in nodule development are poorly characterized. Here, we report the detailed patterns of auxin accumulation during nodule development in Lotus japonicus. Our analyses showed that auxin predominantly accumulates in dividing cortical cells and that NODULE INCEPTION, a key transcription factor in nodule development, positively regulates this accumulation. Additionally, we found that auxin accumulation is inhibited by a systemic negative regulatory mechanism termed autoregulation of nodulation (AON). Analysis of the constitutive activation of LjCLE-RS genes, which encode putative root-derived signals that function in AON, in combination with the determination of auxin accumulation patterns in proliferating cortical cells, indicated that activation of LjCLE-RS genes blocks the progress of further cortical cell division, probably through controlling auxin accumulation. Our data provide evidence for the existence of a novel fine-tuning mechanism that controls nodule development in a cortical cell stage-dependent manner.
منابع مشابه
Acropetal Auxin Transport Inhibition Is Involved in Indeterminate But Not Determinate Nodule Formation
Legumes enter into a symbiotic relationship with nitrogen-fixing rhizobia, leading to nodule development. Two main types of nodules have been widely studied, indeterminate and determinate, which differ in the location of the first cell division in the root cortex, and persistency of the nodule meristem. Here, we compared the control of auxin transport, content, and response during the early sta...
متن کاملInvolvement of auxin distribution in root nodule development of Lotus japonicus (Graduate School of Agriculture, Laboratory of Plant Gene Expression, RISH, Kyoto University)
S (PH D THESIS) Involvement of auxin distribution in root nodule development of Lotus japonicus (Graduate School of Agriculture, Laboratory of Plant Gene Expression, RISH, Kyoto University) Kojiro TAKANASHI Legumes (Fabaceae) constitute the third largest plant family with around 700 genera and 20,000 species. Legume plants form root nodules through symbiosis with a soil microbe called rhizobia....
متن کاملInvolvement of auxin distribution in root nodule
S (PH D THESIS) Involvement of auxin distribution in root nodule development of Lotus japonicus (Graduate School of Agriculture, Laboratory of Plant Gene Expression, RISH, Kyoto University) Kojiro TAKANASHI Legumes (Fabaceae) constitute the third largest plant family with around 700 genera and 20,000 species. Legume plants form root nodules through symbiosis with a soil microbe called rhizobia....
متن کاملInvolvement of auxin distribution in root nodule developmentof
S (PH D THESIS) Involvement of auxin distribution in root nodule development of Lotus japonicus (Graduate School of Agriculture, Laboratory of Plant Gene Expression, RISH, Kyoto University) Kojiro TAKANASHI Legumes (Fabaceae) constitute the third largest plant family with around 700 genera and 20,000 species. Legume plants form root nodules through symbiosis with a soil microbe called rhizobia....
متن کاملNODULE INCEPTION Directly Targets NF-Y Subunit Genes to Regulate Essential Processes of Root Nodule Development in Lotus japonicus
The interactions of legumes with symbiotic nitrogen-fixing bacteria cause the formation of specialized lateral root organs called root nodules. It has been postulated that this root nodule symbiosis system has recruited factors that act in early signaling pathways (common SYM genes) partly from the ancestral mycorrhizal symbiosis. However, the origins of factors needed for root nodule organogen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 139 21 شماره
صفحات -
تاریخ انتشار 2012